

ву D. Hofer, Keller AG für Druckmesstechnik

Communication Protocol 4 LD ... 9 LD

Date	of Release	11. Feb. 2012	
Filen	ame	Communication Protocol 4LD9LD Feb12.doc	
Abstr	act	Visually the Series 4 LD 9 LD are like standard KELLER pressure transdurcers with a 5 pinout to connect the half-open Wheatstone Bridge. But these I ² C versions contain beside the pressure sensor a very tiny signal conditioner. This results in an OEM pressure transmitter with a digital interface. The "D" stands for "digital" and for "dual"; the LD-Line provides pressure and temperature information. The most important topics regarding the communication with the Series 4 LD 9 LD and KEL-LER's unique embedded DSP core, are listed in this protocol description - especially the interpretation of the readout values. This file is still under construction.	D -
1	Electrical interface and	l Pinout	
2	Get Measurement Data	3	
21	Get the digital Values	3	
22	Interpretation of the dir	aital Values 4	
2.3	Variants to detect the	end of conversion	
2	Ontional further Comm	ande 6	
3 2 1		ianu <mark>s</mark>	
3.1	Decommonded Slave		
J.Z		กนนเธงรธง	
4	Source Code		
4.1	Header-File		
4.2	C-File		

1 Electrical interface and Pinout

Lable	Description	Wire
SUP	1,83,6 V	вк
GND	GND	WН
SCL	I ² C Clock	YE
SDA	I ² C Data	BU
EOC	End of Conv.	RD

Pull-up resistors are needed at SDA and SCL. 1..10kOhm are recommended. In order to optimise the data rate or low power consumption, other resistance values are possible.

The EOC-Pin supplies an active high level in idle state and an active low level during conversion.

Notes

Be careful with the glazed pins, cracks in the glass pills causes leakage => damage

Do not touch the steal diaphragm!

2 **Get Measurement Data**

2.1 Get the digital Values

ADDR default = 0x00

(ADDR << 1) + 1 for Read First byte is: (ADDR << 1) + 0 for Write

1. Request Measurement (2 bytes from Master)

ADDR	W	0xAC
------	---	------

2. Wait 10ms or wait for EOC=1 (goes up to VDD) or check the "Busy?" flag [5] in the status byte (only one byte reading needed).

3. Read Measurement (1 byte from Master, 5 bytes from Slave)							
ADDR	R	STATUS	P MSB	P LSB	TMSB	T LSB	
Getting only the pressure information; it is possible to read out only 3 bytes from the Slave							

Getting only the pressure information; it is

2.2 Interpretation of the digital Values

P [u16]

16384	P ₁₆₃₈₄ resp. P_min, e.g. –1 bar PR
49152	P ₄₉₁₅₂ resp. P_max, e.g. 30 bar PR

The pressure range of the transmitter is stored in its memory and/or written on the associating papers.

P [bar] = (P [u16] - 16384) x (P₄₉₁₅₂ - P₁₆₃₈₄) / 32768 + P₁₆₃₈₄

The output range is ¼ to ¾ of the 16 bit output word. This way a little over- and under-pressure is measurable and the exceeding resolution of more then 30'000 point guarantee a very high resolution of 10'000 points even for the next lower standard pressure range.

T [u16]

384	-50°C
64384	150°C

T[°C] = (floor(T[u16] / 16) – 24) x 0.05°C – 50°C

= (T[u16] >> 4) – 24) x 0.05°C – 50°C

Reduce the 16 bits of the temperature information first to 12bit; the last 4 bits are anyway noise floor. This way a resolution of 1/20°C is still given.

The scaling goes from -50 to 150°C but the working temperature range of the transmitter is at maximum -40..85°C (depending on the order; 0..50°C and -10..80°C are the standard temperature ranges).

2.3 Variants to detect the end of conversion

Yellow: SCL, Blue: SDA, Red: EOC, Green: SUP

3 Optional further Commands

3.1 User-Words

16bit memory cells

MTP Address	Description	Customer-Definition	Remarks
0x00	Cust_ID0	Equipment# [063] MSB Place# [01023] LSB	for DB access
0x01	Cust_ID1	File# LSB	for DB access
0x11	Not assigned	File# MSB	presently AUX
0x12	Not assigned	Year [031]+2012 Month [015] Day [031] P-Mode[03] LSB	Y:5bit M:4bit D:5bit P:2bit
0x13	Not assigned	P_16384 [f32 (IEEE 754, single) MSB]	Pmin [bar] als 32bit float
0x14	Not assigned	P_16384 [f32 (IEEE 754, single) LSB]	
0x15	Not assigned	P_49152 [f32 (IEEE 754, single) MSB]	Pmax [bar] als 32bit float
0x16	Not assigned	P_49152 [f32 (IEEE 754, single) LSB]	

IEEE 754: single bzw. float von "single-precision binary floaing-piont format"

P-Mode[0..3]: 0=PR, 1=PA, 2=PAA, 3=PR

Read Memory Content:

ADDR default = 0x00

First byte is:

(ADDR << 1) + 1 for Read (ADDR << 1) + 0 for Write

1. Request Measurement (2 bytes from Master)

ADDR | W MTP Address (0x13..0x16)

2. Wait for 0.5ms or check the "Busy?" flag

3. Read Measurement (1 byte from Master, 3 bytes from Slave)

ADDR	R	STATUS	Mem MSB	Mem LSB

4. Interpretation

In the two LSBs of cell 0x12 is the pressure mode (sealed or vented gauge and zero definition) stored.

The content of cell 0x13 and 0x14 is a floating-point value that indicates the pressure in [bar] for the lower output value, 16384. The content of cell 0x15 and 0x16 is a floating-point value that indicates the pressure in [bar] for the lower output value, 49152.

3.2 Recommended Slave Addresses

If you want to combine more than one pressure transmitter on the same I2C bus, the slave addresses have to be unique. For this purpose the memory content of -for example- a second transmitter have to be overwritten. It is not possible to erase the content to make any possible change because the memory bases "on a one time programmable technology", so it is only possible to add some "1"s by burning additional bit-cells. After adding 6 (or 7) "1"s to the 7 bit slave address register, there is a further possibility to make changes: cleaning the whole memory content by incrementation of the page counter. That gives you in minimum a second chance to choose a slave address absolutely independent from the tries before.

The conclusion is that it is not possible to change the slave address uncountable times. So it is recommended to plan the whole bus system and program the bus addresses once or in case of something unpredictable a second time.

Shot	Description	Slave-ADDR]
0	1st Transmitter, default	0x00	-
1	2 nd Transmitter	0x20	-
2	3 rd Transmitter	0x21	
3	4 th Transmitter	0x23	
4	5th Transmitter	0x27	
5	6th Transmitter	0x2F	
6	7th Transmitter	0x3F	
(7)	(8 th Transmitter)	(0x7F)	

To have more than one possibility per memory page to change the slave address, we recommend the following set off addresses.

With the mentioned addresses it is possible to make for example a 3rd transmitter on the bus to a 4th. The "I²C committee" does not recommend to use addresses between 0x78 and 0x07F, so the 7th try is possible but not favored. The addresses 0x00 to 0x07 are also reserved but 0x00 (our default) is the "General call address".

If you change the slave address and don't use a new memory page, the checksum can not be updated. The STATUS byte is then no longer 0x40 (only "Powered?" bit is set), it becomes 0x44 ("Memory error?" appears) but that does not matter.

Bit	7	6	5	4	3	2	1	0
Meaning	0	Powered?	Busy?	Мо	de	Memory error?	Data transfer	Special

4 Source Code

Still under construction

4.1 Header-File

```
_____
// constants
#define SDA_OUT
               TRISDbits.TRISD5 // RD5 is SDA (without MSSP)
#define SDA_OD
               LATDbits.LATD5
#define SDA_IN
               PORTDbits.RD5
               TRISDbits.TRISD6 // RD6 is SCL (without MSSP)
#define SCL_OUT
#define SCL_OD
               LATDbits.LATD6
#define cZI Pmin
                               // fix coded or read out from the userMEM
               0
#define cZI Pmax
               30
                               // fix coded or read out from the userMEM
_____
// global variables
#ifndef __C_ZI_ZSSC_I2C__
extern
#endif
_F32 ZI_pressure; // Variable for pressure value in [bar] as single (IEEE 754)
#ifndef __C_ZI_ZSSC_I2C__
extern
#endif
_F32 ZI_temperature;// Variable for temperature value in [°C] as single (IEEE 754)
#ifndef __C_ZI_ZSSC_I2C__
extern
#endif
_U8 ZI_status;
              // Variable for 8 bit status
#ifndef __C_ZI_ZSSC_I2C__
extern
#endif
_U8 ZSSCget[5]; // Array to receive data frame
// prototypes global functions
```

_U8 get_PnT_GPIO(_U8); _U8 get_PnT_MSSP(_U8);

4.2 C-File

```
// global functions
_U8 get_PnT_GPIO(_U8 ADDR)(
    _U8 ZSSCerror=0;
    _F32 Pmin, Pmax;
    union {
        _F32 floatingpoint;
        _U32 twotimesU16;
    } cast;
    ///// read the scasling //////
    I2C_write_lByte(ADDR,0x13);
    Delay10TCYx(125);
                                       // 0.4us x 10 x 125 = 0.5ms
    I2C_read_xByte(ADDR,3);
    ZMDget[1]=0x80;
    ZMDget[2]=0;
    cast.twotimesUl6 = ((( U32)(ZMDget[1])) <<24) + ((( U32)(ZMDget[2])) <<16);
    I2C write lByte(ADDR, 0x14);
                                       // 0.4us x 10 x 125 = 0.5ms
    Delay10TCYx(125);
    I2C_read_xByte(ADDR,3);
    cast.twotimesUl6 += (((_U32)(ZMDget[1]))<<8) + ((_U32)(ZMDget[2]));</pre>
    Pmin= cast.floatingpoint;
    I2C_write_1Byte(ADDR,0x15);
    Delay10TCYx(125);
                                       // 0.4us x 10 x 125 = 0.5ms
    I2C_read_xByte(ADDR,3);
    cast.twotimesUl6 = (((_U32)(ZSSCget[1]))<<24) + (((_U32)(ZSSCget[2]))<<16);</pre>
    I2C_write_lByte(ADDR,0x16);
                                       // 0.4us x 10 x 125 = 0.5ms
    Delay10TCYx(125);
    I2C_read_xByte(ADDR,3);
    cast.twotimesUl6 += (((_U32)(ZSSCget[1]))<<8) + ((_U32)(ZSSCget[2]));</pre>
    Pmax= cast.floatingpoint;
    ///// request new conversion //////
    if(I2C_write_lByte(ADDR,0xAC))(return 0x91;)
    ///// wait for new conversion result /////
    Delay100TCYx(250);
                                      // 0.4us x 100 x 250 = 10ms
    ///// read the results out //////
    if(I2C_read_xByte(ADDR,5))(return 0x91;)
    ///// interpret integer values //////
                                                               ZSSCget[0]; // [U8]
    ZI_status
                   = (_F32)( ((((_U16)(ZSSCget[1]))<<8) + (_U16)(ZSSCget[2])); // p[U16]</pre>
    ZI_pressure
    ZI_temperature = (_F32)( (((_U16)(ZSSCget[3]))<<8) + (_U16)(ZSSCget[4]) ); // T[U16]</pre>
                  = (ZI_pressure-16384) * (Pmax-Pmin) / 32768+Pmin;
    ZI_pressure
                                                                              // p[bar]
    ZI_temperature = ((((((_U16)ZI_temperature)>>4)-24)*0.05)-50;
                                                                              // T[°C]
    return ZSSCerror;
```

```
} // end of _U8 get_PnT_GPIO(_U8 ADDR)
```